Cramér-type moderate deviation for quadratic forms with a fast rate

نویسندگان

چکیده

Let X1,…,Xn be independent and identically distributed random vectors in Rd. Suppose EX1=0, Cov(X1)=Id, where Id is the d×d identity matrix. further that there exist positive constants t0 c0 such Eet0|X1|≤c0<∞, |⋅| denotes Euclidean norm. W= ∑i=1nXi∕n let Z a d-dimensional standard normal vector. Q symmetric definite matrix whose largest eigenvalue 1. We prove for 0≤x≤εn1∕6, P(|Q1∕2W|>x) P(|Q1∕2Z|>x)−1≤C1+x5 det(Q1∕2)n+x6 nford≥5 P(|Q1∕2Z|>x)−1≤C1+x3 det(Q1∕2)n d d+1+x6 nfor1≤d≤4, ε C are depending only on d,t0, c0. This first extension of Cramér-type moderate deviation to multivariate setting with faster convergence rate than 1∕n. The range x=o(n1∕6) relative error vanish dimension requirement d≥5 1∕n both optimal. our result using new change measure, two-term Edgeworth expansion changed cancellation by symmetry terms order

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Fast Reduction of Ternary Quadratic Forms

We show that a positive de nite integral ternary form can be reduced with O(M(s) log s) bit operations, where s is the binary encoding length of the form and M(s) is the bit-complexity of s-bit integer multiplication. This result is achieved in two steps. First we prove that the the classical Gaussian algorithm for ternary form reduction, in the variant of Lagarias, has this worst case running ...

متن کامل

Cramér Type Moderate Deviation Theorems for Self-Normalized Processes

Cramér type moderate deviation theorems quantify the accuracy of the relative error of the normal approximation and provide theoretical justifications for many commonly used methods in statistics. In this paper, we develop a new randomized concentration inequality and establish a Cramér type moderate deviation theorem for general self-normalized processes which include many well-known Studentiz...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2023

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/22-bej1549